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are coupled with 1". In groups Q(H){ H }, the elements of 
Q not contained in H are coupled with 1'*. In groups 
Q(H){K }, with H # K, there are elements of Q coupled 
with 1', coupled with 1" and coupled with 1'*. Those 
elements of Q not coupled with any of these constitute a 
subgroup R which is a subgroup of index 2 of both H 
and K, and a subgroup of index 4 of Q. Elements of K 
that are not in R are coupled with 1' and consequently 
double antisymmetry point groups of this type can be 
denoted by Q(H){ KOR)}. The mathematical equivalence 
of the magnetic twin laws given in equation (4) with the 
double antisymmetry groups listed in equation (A1) can 
now be easily seen: One can interchange the correspond- 
ing types of magnetic twin laws and double antisym- 
metry groups by interchanging the square brackets [] 
with the curly brackets { }. In the third column of 
symbols in Table 1, we give the double antisymmetry 
group symbol, equation (A1), of each of the listed 
magnetic twin laws. 
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Abstract  

The use of a crenel function, i.e. a difference between 
two Heaviside functions of amplitude 1, for strong 
occupation modulation waves and its influence on the 
refinement of accompanying displacive modulation 
waves is discussed. The basic set of harmonic functions 
that is usually employed for the modelling of the 
displacive modulation wave is no longer orthogonal on 
the interval where the crenel function takes the value 1. 
This causes severe correlations between different dis- 
placive modulation amplitudes during ref'mement. The 
best solution to prevent these correlations is to select 
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functions for inclusion in the refinement according to the 
criterion that their generalized cosine to the subspace of 
already selected functions has to be smaller than a certain 
threshold value. A quality-of-selection parameter is used 
to estimate the completeness of the selected functions. 
Finally, the selected functions are orthogonalized. One 
artificial illustration and one real example are given to 
demonstrate the use and application of the proposed 
methods. 

Introduct ion  

The theory of (3 + d) superspace groups, introduced by 
de Wolff  (1974, 1977), Janner & Janssen (1977) and de 
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Wolff, Janssen & Janner (1981), is widely used to 
describe the symmetry of commensurate and incom- 
mensurate modulated structures. Modulations of the 
fractional coordinates, site occupancy factors and 
temperature parameters of the atoms in the basic structure 
are usually considered. The functions that describe these 
displacive, occupation and temperature-factor modula- 
tion waves, respectively, are expressed as periodic 
functions of the actual position in the crystal (d = 1) : 

f :  =fV[q.  (r~ + n) + t] =fV(x4) , (1) 

where q is the modulation wave vector, r~) the average 
position of the vth atom, n the actual basic unit cell, t a 
phase factor and x 4 the fourth (internal) coordinate. The 
periodic function fV(x4) -- f " ( x  4 + 1) is usually expanded 
in a Fourier series: 

oo (x) 

fv = A~ + ~ A~,. sin[2rrnx4] + ~ AV,. cos[2amx4]. (2) 
n = l  n = l  

The Fourier coefficients A~, A~,. and A~,. define the set of 
parameters of the (3 + 1) dimensional structure. The 
main advantage of using Fourier series is that, according 
to Fej~rov's lemma, the set of harmonic functions is 
complete. This makes it possible to express very general 
functions even when the infinite summation in (2) is 
truncated. Moreover, the functions of the set are mutually 
orthogonal in the sense of the scalar product defined by 
the integral 

1 

(gi " gj) = f gi(x)gj(x) dx = 8ij, (3) 
o 

where 8i/ is the Kronecker delta. The orthogonality 
condition is necessary to prevent correlations between 
the Fourier coefficients A~, A~,, and A~,, in the refinement 
process. With the expansion (2), it is also possible to find 
an analytical expression for the structure factor as a 
convolution of partial Fourier transforms of separable 
parts corresponding to the occupational, positional and 
temperature parameters, respectively (Prrez-Mato, 
Madariaga & Tello, 1986; Pe~rek & Coppens, 1988). 

Usually, it suffices to take only a very limited number 
of harmonics to model the proper shape of the periodic 
functions defined in (1). However, in cases that require a 
large number of harmonics, special functions like 
sawtooth functions for a displacive modulation wave 
(Petiirek, Gao, Lee & Coppens, 1990) or crenel (single- 
block) functions for an occupation modulation wave (van 
der Lee, Evain, Monconduit, Brec, Rouxel & Pet~rek, 
1994) can be used with less parameters than would be 
necessary with a Fourier expansion (2). 

It can be questioned whether discontinuous functions 
or functions whose derivatives are discontinuous might 
be used to model modulation waves in real crystals. 
Indeed, various faults disturb and smooth the ideal 
situation that sawtooth or crenel functions are supposed 
to model. However, discontinuous functions do describe 

in a first approximation the modulations in structures 
with, for example, discommensurations. It is therefore 
worthwhile to consider the use of these functions in the 
refinement of particular structures. Normally, these 
special functions are applied together with modulation 
functions of the form (2). However, the use of these 
special functions, in particular the crenel function for 
occupationally modulated structures, i.e. structures in 
which the scattering density of one or more sites is 
modulated, may create problems for the refinement of the 
accompanying displacive modulation parameters. For 
instance, if the crenel function takes either the values 1 or 
0, the displacive modulation functions are no longer 
defined for all x 4 and the orthogonality condition (3) is 
no longer warranted, causing severe correlations between 
the displacive or the temperature Fourier coefficients. 

The main purpose of this paper is to present some 
solutions of such problems for both incommensurate and 
commensurate modulated structures with strong occupa- 
tional waves. One artificial example will be used to 
clarify the theoretical part and one real structure, viz the 
modulated structure of TaSio.a10Te 2 (Evain, van der Lee, 
Monconduit & Pet~rek, 1994), will illustrate the 
application of the proposed methods. 

Theory 
The crenel function that describes the occupational 
modulation in a fully ordered structure is defined as 

p ( x 4 ) = l  x 4 e (x ° -  A / E , x  ° + A / 2 )  

p(x4) = 0 x 4 q[ (x ° - A / 2 , x  ° + A / 2 ) .  (4) 

The crenel function can be formally defined as the 
difference between two Heaviside functions of amplitude 
1. Straightforward application of Fourier analysis gives 
the Fourier amplitudes: 

P o =  A 

Ps,n = (2 sin zmA/rrn) sin 2rrnx ° (5) 

Pc,. = (2 sin ztnA/ztn) cos 2rrnx °. 

The coefficients converge to zero only as 1/n. Therefore, 
a rather large number of these Fourier coefficients is 
needed to reasonably approximate the shape of the block 
or crenel. It is noted that the intensities of nth-order 
satellites converge as 1In 2 in the case of a pure 
occupational modulated structure with only one inde- 
pendent atom. Thus, even when high-order satellites are 
not observed, crenel functions might be useful. This is 
easily checked for, for example, the modulated structure 
Ni3_xTe 2 (Schutte & de Boer, 1993) where no satellite 
reflections higher than second order were observed. The 
refined occupancy wave of Ni(2) by two harmonic 
functions, as published by Schutte & de Boer (1993), 
was close to a crenel function. A new ref'mement of this 
structure by using the crenel function showed indeed that 
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the calculated intensity ratio of main reflections to 
first, second, third and fourth-order satellites was 
1000:20:4:0.07:0.04, respectively. The refinement, with 
only one occupational parameter, resulted in an R factor 
only slightly higher than the one that was published 
before, with three occupational parameters and the use of 
a penalty function. 

The use of one or two harmonic functions for a 
function that is close to a crenel function may lead to a 
significant overshoot or undershoot to non-physical 
occupation probabilities larger than one or smaller than 
zero, respectively. This problem is solved by the use of 
'penalty' functions that restrict the occupation probability 
in the physical range (0, 1) (Yamamoto, 1981; Schutte & 
de Boer, 1993) or by modelling the least-squares 
determined wave by a crenel function (van der Lee, 
van Smaalen, Wiegers & de Boer, 1991) or by applying 
the parameters of the crenel function (4), ~ and A, in the 
least-squares procedure itseff (van der Lee et al., 1994). 

In all these cases, there is a significant interval of x 4 
where the displacive and temperature modulation func- 
tions are not or are ill defined, viz for those values of x 4 
where the occupancy probability is zero or close to zero, 
respectively. For instance, in the case of the crenel 
function (5), the set of harmonic functions in (2) is no 
longer orthogonal, since the functions are only defmed 
for x 4 E (X~4 --  A / 2 , ~  4- A /2 ) .  This problem can be, in 
principle, solved in several ways: 

Limitation of  the Fourier expansion 

The first method restricts the Fourier expansion of the 
modulation function to the A interval. This fully solves 
the orthogonalization problem but a large number of 
harmonics is then necessary to approximate a general 
displacement for which the value at ~ -  A / 2  and 

+ A / 2  need not be the same. Moreover, difficulties 
connected with the analytical calculation of structure 
factors in the case where A is not rational make the 
method inapplicable. 

Selection of  basic functions 

The second method consists of a selection of a 
particular subset of the full set of basic harmonic 
functions in the expansion of (2) on the basis of their 
mutual scalar products. This does not ensure orthogon- 
ality, but can nevertheless be used to approach 
orthogonality. The selection is as follows. A symmetrical 
matrix G is defined from scalar products according to the 
relations 

Gij = (gi " gj)/[(gi " gi)(gq " gj)]l/2 (6) 

and 

x~4 + A /2 
(gi" •) "- f gi(x)g~(x) dx. (7 )  

~-A/2 

The G matrix has, by def'lnition, all diagonal elements 
equal to 1.00. The off-diagonal elements define cosines 
of the generalized angle between two elements of the set 
of functions. The larger the off-diagonal element, the 
larger the correlations in the refinement. Note that the G 
matrix for the orthonormalizeA set of functions is equal to 
the unit matrix. 

The quality of the selection of the proper functions 
under the requirements that they should be close to 
mutual orthogonality and that they should def'me an 
almost complete set can be based on their scalar products 
Gij. The simplest criterion is to take a function set that 
has all corresponding Gq lower than a certain limit X. 
However, such a criterion is expected to work only if the 
limit is smallenough to ensure that the functions will not 
make a linearly dependent set. As an example, let us take 
three vectors in a three-dimensional Eulerian space. 
These vectors can still be co-planar when their mutual 
angles defmed by the scalar products are equal to 120 °. 
Therefore, a more complicated procedure has to be 
applied. The function gi(x) will only be accepted to 
enlarge the subset Mn = {g] . . . .  , g~} of already selected 
functions if the cosine, e i, of its angle to the linear 
subspace M n is smaller than the chosen limit X. To do so, 
the function gi(x) can be split into two components, one 
perpendicular to M,, and one that is a linear combination 
of the functions of Mn: 

gi(x) = g± (x) -k- gM. (X) = g± (x) -}- ~-]~ cqg~(x). (8) 
i=l 

The coefficients o/i (i = 1, . . . ,  n) follow from the matrix 
equation 

c~ = F -1/3, (9) 

where/3i "-- (g" g~)l[(g" g)(g~" g~)]l/2 and the matrix F is 
composed from the subset Mn in the same way as the 
matrix G in (6). The length of gM.(X) divided by the 
length of gi represents the cosine of the angle 

ei "-" [fl rF- l  /3/(gi " gi)] 1/2" (lO) 

Thus, gi is rejected if e i > X. The disadvantage of this 
method is that some of the harmonic functions gi are 
skipped and that, therefore, the set is not necessarily 
complete. This means that a part of the displacive 
modulation in the crystal is not completely described. 
The quality of the selection can be estimated from the 
perpendicular components of the non-selected harmonic 
functions. The larger the perpendicular component, the 
higher the chance that a serious error occurs in describing 
the displacive modulation. Thus, the sum of all such 
contributions, ~, is a measure of completeness of the 
selected set of g~ functions: 

n 

= )-~(1 - -  /~2)1/2. ( 1 1 )  
i=1 
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Orthogonalization o f  basic functions 

The third method is based on the Schmidt orthogona- 
lization procedure by which an orthogonal set over an 
arbitrary interval can be constructed from a non- 
orthogonal set of linearly independent functions. The 
nth orthogonalized function ~,,(x) is built from a 
combination of the first n basic functions 
g l ( x ) ,  . . . , g,(x): 

n 
y,,(x) = ~_~ T,,,g,(x), (12) 

i=1 

where i runs over the non-selected functions. This means 
that the matrix T is triangular. The procedure is unique if  
the condition of orthogonality is combined with the 
normalization of the new functions. The main advantage 
of this method is that the procedure transforms 
the complete set onto a new complete set. The zeroth- 
order term A 0 of the expansion (2) is again the average 
value of the relevant parameter in the interval 
( ~ -  A / 2 , ~  + ,4/2). This is not generally valid for 
the basic harmonic functions where the zeroth-order term 
is the average value over the complete interval (0, 1). 

The major problem of the orthogonalization method is 
that the calculation of the structure factors might be 
troublesome when the initial subset of functions is almost 
linearly dependent. This is because even small displace- 
ments are described as combinations of large partial 
displacements. The combination of the selection of basic 
functions (second method) together with the orthogo- 
nalization procedure (third method) is finally the best 
solution. 

This procedure can also be applied to the commensu- 
rate case. The only difference is that the number N of 
functions in (2) is finite and all integrals have to be 
substituted by a summation over the discrete set of values 
of x 4. It is noted that the number of displacive Fourier 
amplitudes to be selected has to be equal to the number 
of degrees of freedom in the actual supercell. This 
number is, for an occupational modulated structure with 
site occupancy factors of either 1 or 0, in general lower 
than N. The foregoing selection procedure will exactly 
pick up those Fourier amplitudes that minimize correla- 
tions and avoid false minima. 

All aforementioned theoretical results have been 
incorporated into a new version of the computing system 
JANA94 (Pet~6ek, 1994). A special interactive routine 
makes it possible to select the most convenient set of 
functions that can be orthogonalized in the refinement 
process. 

An artificial test case 

The parameters of Table 1 were used to generate 
structure factors for a hypothetical structure. Noise from 
a random-number generator was applied to the structure 
factors to ensure similar conditions to a real refinement 

Table 1. Basic data for  the artificial test example 

Formula: Ta 
Basic unit cell: a = 3.018, b = 4.031, c = 3.815 ~, 

a = 80,/3 = 75, y = 80 ° 
Modulation wave vector: q = 0.3412a* + 0.4091b* + 0.2752c* 
Superspace group: Pl(a/3)t) 
hklm range: all main reflections and satellites up to 

fifth order (sin 0/2 < 1.0.~, -I) 

Amplitudes of the displacive modulation function 
n A x .... Ay .... A ... . .  / ix .... Ay ....  A . . . . .  

0 0.0000 0.0000 0.0000 
1 0.0500 -0.0500 0.0500 -0.0250 -0.0350 0.0350 
2 0.0250 0.0100 -0.0150 0.0500 0.0500 -0.0250 
3 0.0350 0.0150 0.0300 0.0250 0.0150 0.0000 

Crenel function parameters A = 0.577807 ~ = 0.833037 
I 

Ull U22 U33 UI2 U13 U23 
0.0150 0.0150 0.0200 0.0050 -0.0050 0.0050 

Table 2. Selection parameters o f  the artificial test case 

The selection code in the table applies to the basic harmonics from set 
(13): 1 means that the corresponding function was selected, 0 means 
that it was not. 

X Selection code ~ (IGol) i # j  m a x  IGifl i ~ j  

0.4 10100110010011 1.859 0.088 0.365 
0.5 10101010100110 1.773 0.123 0.402 
0.6 10111010101000 0.198 0.186 0.506 
0.7 11100110110000 0.132 0.167 0.678 
0.8 11101011100000 0.147 0.200 0.678 
0.9 11111001100000 0.167 0.189 0.678 
1.0 11111110000000 0.000 0.237 0.678 

based on experimental data. Seven different subsets of 
the following basic functions: 

{1, sin(2zrx4), cos(2:rrx4) . . . .  , sin(14:rrx4), cos(14yrx4) } 

(13) 

were selected according to the afore-described criteria for 
~. from 0.4 to 1.0. The number of selected functions in 
each selected set was kept the same as the number of 
waves used for the generation of the model, i.e. seven 
(one absolute term, three sine and three cosine waves). 
The basic characteristics of these sets are summarized in 
Table 2. 

This artificial case provides a very simple test of the 
completeness of the selected functions since the 
modulation wave is exactly known. Therefore, the 
summation of (11) runs over the rejected basic harmonics 
of the first seven functions of the set (13). 

The selected sets were used to refine the structure 
without and with orthogonalization. The results are 
summarized in Table 3. It is obvious by the rather high 
values of reliability factors R and R w that the first two 
selections Q. = 0.4 and 0.5) considerably violate the 
condition of completeness. The best selection, except the 
limiting case L = 1.0, when all the first seven functions 
are accepted, is the case X -- 0.7. These facts correspond 
very well to the estimated criterion ~ from Table 2. The 
accordance of the refined modulations with the waves 
used to generate the artificial case is visualized for the 
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Table 3. Refinement results of  the artificial test case 

The second column of the table contains the final R values; Nc and 
Nco~th refer to the number of correlations higher than 0.5 in the 
refinement without and with orthogonalization; Mc and MCo~ refer to 
the largest correlation in the refinement without and with orthogo- 
nalization. 

1 R /Rw Nc/Ncorth  Mc/Mco~ 
0.4 17.9/23.5 6/7 0.617/0.623 
0.5 19.2/26.4 16/3 0.657/0.625 
0.6 7.1/8.5 24/3 0.810/0.620 
0.7 6.8/8.1 19/4 0.762/0.615 
0.8 7. I/8.5 34/4 0.900/0.615 
0.9 7.1/8.5 42/1 0.977/0.545 
1.0 6.5/7.6 33/1 0.996/0.601 

worst (~. = 0.5) and the best (~. = 0.7) in Figs. l (a)  and 
(b), respectively. It can be seen that for 2 = 0.5 
significant parts of  the modulat ion are not well described, 
which is caused by a lack of  completeness of  the set of  
functions used (~ = 1.773, Table 2). The correspondence 
for ~. = 0.7 is very good for all three coordinates: 

= 0.132. Note that in both cases the correspondence 
outside the physical ly relevant interval is very bad. 

The largest correlations and the number  of  correlations 
higher than 0.5 is different for each set and follow quite 
well the characteristics based on the off-diagonal term of  
the G matrix from Table 2. It is obvious that the selection 
method itself is not  sufficient; important  features of  the 
real modulat ion function are easily lost. On the other 
hand, an orthogonalization alone might  give numerical  
problems. Applied together with the selection procedure, 

it reduces the correlations in all cases. In the presented 
artificial example, the selection is not  really necessary 
and the orthogonalization could be applied even in the 
l imiting case when all functions are selected. 

An experimental case: TaSio.414Te 2 

The MAxTe 2 (M = Nb,  Ta; A -- Si, Ge; 1/3 < x < 1/2) 
phases have compositionaUy driven modulated structures 
with strong accompanying displacive waves (van der Lee 
et al., 1994; Evain et al., 1994). The basic unit  cell 
contains four independent  atoms: Ta(1), Ta(2), Si with 
average occupancies of  1 - x, x and x, respectively, and 
Te, which is only displacively modulated. The (3 + 1)-D 
superspace group that describes the symmetry of  most  
MAxTe 2 commensurate and incommensurate  modulated 
phases is Pnma(OOF)sO0 with F = x. In the case of  
TaSio.a14Te2, satellite reflections up to sixth order are 
observed. The occupational modulat ion waves of  the 
cations are most  easily described by crenel functions 
[equation (4)]. A refinement of  the parameters of  the 
accompanying displacive waves suffers from strong 
correlations between the different-order Fourier ampli- 
tudes i f  no selection and/or orthogonalization of  the 
waves is applied. 

We performed four different ref'mements to illustrate 
the methods described in the theory section. The first 
refinement used all harmonics without any selection and/ 
or orthogonalization. A second ref'mement used orthogo- 
nalization without selection of  proper harmonics.  The 
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Fig. 1. Displacive modulation of Ta in the artificial test case as a function of x4 for x (left), y (centre) and z (right) for (a) 1 = 0.5 and (b) ~. = 0.7. 
The modulation only has physical meaning in the interval (~ - A/2, ~ + A/2). The dotted line represents the ideal case and the full line 
represents the results from the refinement. 
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third one used only a selection procedure. Finally, the 
last one combined the othogonalization with the selection 
of harmonics. It is noted that the second refinement is 
basically the same as the one previously described (Evain 
et al., 1994). Along with the ~ refinements, a special 
'overlap' procedure was applied, that is, the intensities of 
reflections that are so close in the diffraction pattern that 
they effectively overlap were taken into account as such. 

A difficulty that did not arise for the artificial test case 
is that the shape of the modulation wave is not a priori 
known. The decision whether to use a new harmonic 
function was therefore taken on the basis of R factors and 
the presence or absence of a change of the modulation 
curves. Four displacive harmonic amplitudes, including 
the zeroth-order harmonic, were found to be sufficient for 
all cations. Nine amplitudes were used for Te. Table 4 
compiles the characteristics of the selection procedure 
and Table 5 the results of the refinements. 

It can be seen that the f'mal reliability factors do not 
differ much, but that the number of important correla- 
tions is greatly reduced compared with the classical 
refinement, i.e. a refinement without any selection and/or 
orthogonalization procedure. However, the modulation 
waves for Ta(2) resulting from the classical refinement 
and the refinement of the orthogonalized reduced set of 
harmonics significantly differ, especially near the edges 
of the crenel [Figs. 2(a) and (b)]. It is now interesting to 
compare the distance between Ta(1) and Ta(2) calculated 
from the two different refinements. The minimum and 
maximum distances from the classical refinement are 
2.62 and 2.93,~, respectively. The second refinement 
yields 2.72 and 2.89A, respectively. The results of the 
second refinement are in better agreement with already 
published values of commensurate structures. 

As shown in Fig. 2(c), the use of only the selection 
procedure already creates an almost complete set of 
functions. The curves for the heavier atoms Ta(1) and 
Ta(2) completely overlap. As in the artificial test case, an 
orthogonalization procedure without any selection would 
suffice to refine the structure without too severe 
correlations. 

Table 4. Selection procedure for TaSio.414Te 2 

Selection (IGol) max IGijl 
A ~ code ~ i ~ j  i ~ j  

Ta(l) 0.58603 0.831291 1110010 0.351 0.247 0.671 
Ta(2) 0.41397 0.331876 1010011 0.373 0.196 0.544 

Si 0.41397 0.464117 1100110 0.150 0.255 0.322 

Note:  ~. ---- 0.7. 

Table 5. Refinement results for TaSio.414Te 2 

Nc is the number of correlations larger than 0.5; Mc is the largest 
correlation. These numbers only apply to the displacive modulation 
waves of the cations. 

Refinement  R / R  w Nc Mc 

Classical 10.94/12.39 42 0.998 
Selection alone 10.88/12.38 19 0.898 
Orthogonalization alone 10.99/12.46 2 0.605 
Selection plus orthogonalization 10.87/12.38 0 - -  

Concluding remarks 

We have proposed some methods to reduce strong 
correlations between displacive Fourier amplitudes in 
the ref'mement of occupationally modulated structures. 
Although the use of these methods is not always a 
prerequisite to obtain the final structure model, it is 
expected to be indispensable for more complicated 
displacive modulation waves and also for commensurate 
modulated structures, where a selection of basic func- 
tions inevitably has to be made. 

The following guidelines can be given. Once the 
approximate position and width of the crenel have been 
determined, a pure orthogonalization can be applied 
Q. = 1.0). If numerical problems occur, a set of ~. values 
should be chosen and corresponding ~ values have to be 
calculated. Choose, then, a ~. on the basis of a low 
value and combine the selected functions in an 
orthogonalization procedure for refinement. For a 
commensurate case, a selection of functions suffices. 

The research of VP has been made possible by the 
grant 202/93/1154 from the Grant Agency of the Czech 
Republic and that of AvdL by a grant from the CNRS 
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Fig. 2. Modulations in TaSi0.414Te 2. (a) Displacive modulation of the x coordinate of Ta(2); (b) displacive modulation of the z coordinate of Ta(2); 
(c) displacive modulation of z coordinate of Si. In (a) and (b), the dotted line represents the modulation from a classical ref'mement, in (c) the 
modulation from a refinement with a selection of basic functions. The full lines represent the results from the refinement with a selection of basic 
functions together with orthogonalization. 
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(Sciences Chimiques). The data set of Nia_xTe 2 was 
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of Groningen, The Netherlands). 
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A b s t r a c t  

A new strategy for employing three phase triples 
invariant estimates from Hauptman's single isomorphous 
replacement (SIR) and anomalous dispersion (SAS)joint 
probability distribution formulae is outlined which 
produces a single unique phase-invariant solution in the 
case where the positions of the heavy-atom scatterers is 
known. A similar but non-identical result is obtained for 
the phase invariants of a structure for which a molecular- 
replacement solution has been obtained. It is important to 
note that the values of the individual native/derivative 
phases can be determined directly from the probability 
distribution formulae without having to utilize the phase- 
invariant estimates in an active way. Elimination of the 
multisolution aspect of utilizing phase-invariant esti- 
mates should have important repercussions with regard to 
phasing macromolecular sets of derivatized data. Trial 
calculations based on experimentally measured 2.5A 
data for three derivatives of cytochrome %5o are 
encouraging. The average of the three SIR maps 
resolves a number of structural ambiguities seen in the 
published multiple isomorphous replacement (MIR) map 
obtained from eight derivatives. 

I n t r o d u c t i o n  

Probabilistic formulae to estimate the three phase triples 
invariants of macromolecular structures using SIR 
(Hauptman, 1982a) and SAS (Hauptman, 1982b) data 
were first derived by Hauptman more than ten years ago. 
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Whereas a unique solution exists for the phase invariant 
within the interval 0 to 2~r from the conditional 
probability distribution formula in the SAS case, only 
the sig~ of the cosine of the phase invariant, but not its 
modulus, was obtained from the analogous SIR distribu- 
tion formula if the positions of the derivative heavy 
atoms were unknown. A more specific formula appro- 
priate to the two-derivative MIR situation was developed 
(Fortier, Weeks & Hauptman, 1984) that improved the 
accuracy of the estimates. It was noted that, if the 
reciprocal-lattice vectors, rather than the atomic co- 
ordinates, Were considered the primitive random vari- 
ables in the derivation of the SIR distribution function, a 
slightly different result could be obtained (Giacovazzo, 
Cascarano & Zheng, 1988), but still only the mode of the 
phase invariant, 0 or Jr, could be determined without 
knowledge of the heavy-atom scatterers. A prior study 
had meanwhile indicated that both the sign and modulus 
of the cosine invariant within the full range of +1 to - 1  
was obtainable if the positions of the heavy-atom 
scatterers were known for the SIR case (Fortier, Moore 
& Fraser, 1985); improved phase-invariant estimates for 
the SAS case were also reported (Fortier, Fraser & 
Moore, 1986). 

In this paper, we have reinvestigated Hauptman's 
original SIR work to discover that both the sine and 
cosine of the phase invariant can be obtained from the 
joint probability distribution function in a rather obvious 
way if the positions of the derivative heavy atoms are 
known. Moreover, unique values for the native and 
derivative phases can be directly obtained from the 
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